Q.P. Code: 20HS0849											R	20						
Re	g.	No:																
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B.Tech I Year I Semester Supplementary Examinations November-2022 APPLIED PHYSICS																		
				(0	Comm	on to C	CSE, C	CSM,	CIC,C	AD,C	CC &	CSIT)					
Tin	ne:	3 hours												May	k. Ma	rks: 6	0	
					(2	Answei	all F	ive U	nits 5	x 12 =	60 M	arks)						
1	a	a Discuss the theory of interference of light due to thin films by reflection with												with	L1	5M		
	b	Derive	the cc	agran	n on for	const	ructiv	e and	1 destri	uctive	inter	ferenc	e ii	n the	e case	e of	L4	7M
		reflecte	d syste	em.													_	
2		OR Describe Ensurbation differentian due to devide ality and device the second differentian												tions	for	Ι2	QM	
4	а	principal maxima, secondary maxima and minima.											101	LJ	OIVI			
	b	A plane transmission grating having 4250 lines per cm is illuminated with sodiur light normally. In the second order spectrum, the spectral lines are deviated by 30										1000 30° .	L4	4M				
		What is	the wa	aveler	igth o	f the sp	pectra	l line	?									
3	a	What a	are the	e sali	ent f	eatures	of	quan	tuml f	ree el	ectro	n the	ory	? D	erive	an	L4	8M
	b	Write a	dvanta	ges qu	iantu	n free	electro	on th	eory ov	ver clas	ssical	free e	elec	tron	theor	y.	L1	4M
					2				OR							0		
4	Ez	xplain the propagation of electromagnetic wave in non-conducting media.													L4	12M		
5	a	Describ	Describe the construction and working principle of He-Ne Laser with the help of a														L3	8M
	b	Write the advantages of He-Ne laser.									L1	4M						
-									OR									_
6	a b	An optical fibre has a numerical aperture of an optical fibre and derive an expression for it. An optical fibre has a numerical aperture of 0.20 and cladding refractive index of 1.59. Determine the refractive index of core and the acceptance angle for the fibre in water has a refractive index of 1.33												L1 L3	8M 4M			
7	a	Describ	e the H	Hall E	ffect i	n semi	condu	ictors	5.								L3	8M
	b	Write th	ne appl	icatio	ns of	Hall E	ffect.		OD								L1	4M
8	a	Derive semicor	the ex	pressi rs in t	on fo	or curre	ent ge	enera etric	OR ted due field	e to di	rifting	g of cl	har	ge ca	arrier	rs in	L4	6M
	b	Derive	the ex	pressi	on fo	r curre	nt gei	nerat	ed due	to dif	fusio	n of c	har	ge c	arrier	s in	L4	6M
		semicor	ducto	rs in tl	he abs	sence o	f elec	tric f	ield NIT-V									
9	a	Prove th	nat sup	er cor	nducto	or is a v	ery g	ood	liamag	netic r	nateri	al.					L4	8M
	b	Write th	ne appl	icatio	ns of	superc	onduc	tors.	OP								L1	4M
10	я	Explain	Sol-G	el tec	hniau	e for s	unthes	sis of	OK	aterial							I.4	8M
IV	b	Write th	e appl	icatio	ns of	nanom	ateria *	l in v **F	arious	fields.							L1	4M
									. ~									